quarrying / quarrying-paper-notes
个人论文笔记
☆15Updated last week
Alternatives and similar repositories for quarrying-paper-notes:
Users that are interested in quarrying-paper-notes are comparing it to the libraries listed below
- 钢筋数量识别 baseline 0.98336☆83Updated last year
- Train Your Own DataSet for YOLACT and YOLACT++ Instance Segmentation Model!!!☆63Updated 4 years ago
- A keras version of real-time fire detection network: mobilenet_v2_ssdlite.☆17Updated 2 years ago
- ☆71Updated 6 months ago
- 45.1% mAP, Keras impl of PPYOLO and YOLOv4.☆29Updated 4 years ago
- Detection_Augmentation☆25Updated 2 years ago
- yolov5 with more backbone☆17Updated 2 years ago
- 使用opencv的dnn模块做YOLObile的目标检测☆17Updated 4 years ago
- Segmentation-Based Deep-Learning Approach for Surface-Defect Detection☆25Updated 4 years ago
- OpenCV加载onnx实现SSD,YOLOV3,YOLOV5的推理☆25Updated 3 years ago
- 分别使用OpenCV,ONNXRuntime部署yolov5不规则四边形目标检测,包含C++和Python两个版本的程序☆27Updated 2 years ago
- 分别使用OpenCV、ONNXRuntime部署多任务的yolov5目标检测+语义分割,包含C++和Python两个版本的程序☆30Updated 2 years ago
- Code of kaggle semantic segmentation competition: Steel Defect Detection.☆23Updated 2 years ago
- Segmentation-based deep-learning approach for surface-defect detection with pytorch☆24Updated last month
- 无人机视角、多模态、模型剪枝、国产AI芯片部署☆38Updated 2 years ago
- YOLOV3☆12Updated 4 years ago
- A polygon detector based on obb-yolov3 (WIP)☆16Updated 3 years ago
- 布匹缺陷识别练习赛☆45Updated 3 years ago
- YOLO系列资料☆50Updated 2 years ago
- 用opencv的dnn模块实现Yolo-Fastest的目标检测☆50Updated 4 years ago
- joooogle / Automatic-labeling-of-instance-segmentation-Mask-Rcnn-in-static-background-base-on-labelme静态背景下实例分割数据集自动标注工具,基于Labelme改进。可以自动生成labelme格式的json文件。(注意:本程序只适用于大量图片基于静态背景)原理是:背景减除后得到高质量的二值图,计算连通域外轮廓坐标,再将信息写入json文件。☆12Updated 5 years ago
- 模板匹配SSDA(序贯相似性)算法的python实现☆17Updated 4 years ago
- ☆25Updated 5 years ago
- ACCV Fine-grained recognition code☆58Updated 3 years ago
- TensorRT inference sample for ResNet50☆34Updated 6 years ago
- 基于RetinaFace的目标检测方法,适用于人脸、缺陷、小目标、行人等☆107Updated 4 years ago
- YOLOX 训练自己的数据集 TensorRT加速 详细教程☆40Updated 3 years ago
- 借助于Ascend310 AI处理器完成深度学习算法部署任务,应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务 ,并对系统性能做出一定的优化。☆28Updated 3 years ago
- ☆65Updated 4 years ago
- QuarkDet lightweight object detection in PyTorch .Real-Time Object Detection on Mobile Devices.☆91Updated 3 years ago