quarrying / quarrying-paper-notesLinks
个人论文笔记
☆15Updated last month
Alternatives and similar repositories for quarrying-paper-notes
Users that are interested in quarrying-paper-notes are comparing it to the libraries listed below
Sorting:
- 使用opencv的dnn模块做YOLObile的目标检测☆17Updated 4 years ago
- 分别使用OpenCV、ONNXRuntime部署多任务的yolov5目标检测+语义分割,包含C++和Python两个版本的程序☆30Updated 3 years ago
- Detection_Augmentation☆25Updated 2 years ago
- YOLOX 训练自己的数据集 TensorRT加速 详细教程☆40Updated 3 years ago
- TensorRT inference sample for ResNet50☆34Updated 6 years ago
- 增加了较为详细的注释、一些自己的功能和封装代码方便嵌入☆18Updated 3 years ago
- YOLOv3 detector with quadrangle in PyTorch☆89Updated 5 years ago
- 【口罩佩戴检测数据训练 | 开源口罩检测数据集和预训练模型】Train D/CIoU_YOLO_V3 by darknet for object detection☆58Updated 5 years ago
- Using CPU to test model☆32Updated 4 years ago
- Source Code of our CVPR2021 paper "Rethinking BiSeNet For Real-time Semantic Segmentation"☆22Updated 3 years ago
- ☆72Updated 11 months ago
- ☆45Updated 4 years ago
- 在Windows上的 ONNX 转 TensorRT 解决方案☆41Updated 5 years ago
- Train Your Own DataSet for YOLACT and YOLACT++ Instance Segmentation Model!!!☆68Updated 5 years ago
- 钢筋数量识别 baseline 0.98336☆85Updated 2 years ago
- 无人机视角、多模态、模型剪枝、国产AI芯片部署☆41Updated 3 years ago
- yolov5第四版☆15Updated 3 years ago
- CornerNet-Lite的批注与学习☆12Updated 6 years ago
- OpenCV加载onnx实现SSD,YOLOV3,YOLOV5的推理☆24Updated 3 years ago
- ☆14Updated 5 years ago
- this is a tensorrt version unet, inspired by tensorrtx☆37Updated 10 months ago
- code of MobileCount☆27Updated 3 years ago
- End to End Chinese License Plate Recognition☆81Updated 6 years ago
- using deep learining to detect keypoints in PyTorch☆19Updated 5 years ago
- 自然场景检测DBNet网络的tensorrt版本☆22Updated 4 years ago
- Pytorch Version of PP-LCNet☆11Updated 3 years ago
- Rank-consistent Oridinal Regression☆17Updated 5 years ago
- TensorRT for SOLO(use python)☆27Updated 2 years ago
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆31Updated 2 years ago
- operate the xml files in the VOC dataset☆11Updated 6 years ago