nitromannitol / stochastic-quasi-newton
modular implementation of new algorithm
☆13Updated 10 years ago
Alternatives and similar repositories for stochastic-quasi-newton
Users that are interested in stochastic-quasi-newton are comparing it to the libraries listed below
Sorting:
- Fastidious accounting of entropy streams into and out of optimization and sampling algorithms.☆32Updated 9 years ago
- Reducing Reparameterization Gradient Variance code.☆33Updated 7 years ago
- Repository for Chained Gaussian Processes☆14Updated 9 years ago
- Python implementation of Markov Jump Hamiltonian Monte Carlo☆24Updated 8 years ago
- The information sieve for discrete variables.☆36Updated 8 years ago
- An iterative neural autoregressive distribution estimator (NADE-K)☆26Updated 10 years ago
- Torch implementation of the Deep Network for Global Optimization (DNGO)☆51Updated 8 years ago
- Fast CPU implementations of several conditional probabilistic models☆37Updated last year
- A Newton ADMM based solver for Cone programming.☆38Updated 7 years ago
- The Matlab Code for the ICML 2015 paper "Scalable Deep Poisson Factor Analysis for Topic Modeling"☆19Updated 9 years ago
- Code for the arxiv paper☆9Updated 10 years ago
- code for stochastic expectation propagation☆16Updated 9 years ago
- Look Ahead Hamiltonian Monte Carlo☆30Updated 10 years ago
- Gopalan, P., Ruiz, F. J., Ranganath, R., & Blei, D. M. (2014). Bayesian Nonparametric Poisson Factorization for Recommendation Systems. I…☆15Updated 10 years ago
- Code for Max-Margin Deep Generative Models☆12Updated 10 years ago
- Collaborative filtering with the GP-LVM☆25Updated 10 years ago
- SparseAutoEncoder - Unsupervised Learning☆14Updated 13 years ago
- An implementation of the Hessian-free optimization algorithm in Theano☆61Updated 13 years ago
- simple example of gradient-based hyperparameter optimization using tensorflow☆19Updated 9 years ago
- miniplaces2 deep residual network in neon☆16Updated 9 years ago
- ADMM on Apache Spark☆31Updated 9 years ago
- Python package for inference with Gaussian processes☆11Updated 10 years ago
- Columbia Advanced Machine Learning Seminar☆24Updated 6 years ago
- Experiment files for the paper "An Analysis of Unsupervised Pre-training in Light of Recent Advances", available here: http://arxiv.org/a…☆18Updated 9 years ago
- Implementation of stochastic variational inference for Bayesian hidden Markov models.☆66Updated 7 years ago
- Preconditioning Kernel Matrices☆15Updated 8 years ago
- A C++ package for discrete distribution based large-scale data processing framework☆2Updated 7 years ago
- Dirichlet Process Mixture using PVI, SMC, Variational☆15Updated 10 years ago
- A simple tool for small scale experiments using bayesian optimization☆35Updated 6 years ago
- ☆11Updated 8 years ago