ngushchin / EntropicNeuralOptimalTransport
Pytorch implementation of "Entropic Neural Optimal Transport via Diffusion Processes" (NeurIPS 2023, oral).
☆37Updated last year
Alternatives and similar repositories for EntropicNeuralOptimalTransport:
Users that are interested in EntropicNeuralOptimalTransport are comparing it to the libraries listed below
- Entropic Optimal Transport Benchmark (NeurIPS 2023).☆22Updated last year
- PyTorch implementation of "Kernel Neural Optimal Transport" (ICLR 2023)☆25Updated last year
- Pytorch implementation of "Light Schrödinger Bridge" (ICLR 2024)☆52Updated 7 months ago
- PyTorch Implementation of Diffusion Schrodinger Bridge Matching☆150Updated last month
- PyTorch implementation of "Extremal Domain Translation with Neural Optimal Transport" (NeurIPS 2023)☆19Updated 3 months ago
- Generative Modeling with Optimal Transport Maps - ICLR 2022☆59Updated 2 years ago
- Official implementation of Deep Momentum Schrödinger Bridge☆24Updated last year
- Light and Optimal Schrödinger Bridge Matching (ICML 2024) official PyTorch implementation☆38Updated 7 months ago
- A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation (NeurIPS 2021)☆39Updated 2 years ago
- PyTorch implementation of "Neural Optimal Transport" (ICLR 2023 Spotlight)☆198Updated last year
- Likelihood Training of Schrödinger Bridge using FBSDEs Theory, ICLR 2022☆82Updated 3 years ago
- ☆13Updated last year
- Code for "Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance", NeurIPS 2022.☆17Updated 2 years ago
- Source code for Large-Scale Wasserstein Gradient Flows (NeurIPS 2021)☆32Updated 2 years ago
- Code for "Optimal Transport-Guided Conditional Score-Based Diffusion Model (NeurIPS, 8,7,7,6)"☆57Updated last year
- PyTorch implementation for our ICLR 2024 paper "Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory…☆24Updated last year
- ☆23Updated 2 years ago
- Official PyTorch implementation for the paper Minimizing Trajectory Curvature of ODE-based Generative Models, ICML 2023☆81Updated last month
- ☆32Updated 10 months ago
- A set of tests for evaluating large-scale algorithms for Wasserstein-1 transport computation (NeurIPS'22).☆20Updated 6 months ago
- Pytorch implementation of "Neural Optimal Transport with General Cost Functionals" (ICLR 2024)☆17Updated 7 months ago
- Official PyTorch implementation for paper: Energy-Based Sliced Wasserstein Distance☆18Updated last month
- NeurIPS'23: Energy Discrepancies: A Score-Independent Loss for Energy-Based Models☆16Updated 5 months ago
- ☆12Updated 2 years ago
- [ICLR'23 Spotlight] gDDIM: analyze and accelerate general diffusion models, isotropic and non-isotropic☆49Updated last year
- Neural Diffusion Processes☆77Updated 7 months ago
- Implementation of our ICLR2023 paper "Spherical-Sliced Wasserstein"☆13Updated last year
- Code for reproducing results in the sliced score matching paper (UAI 2019)☆145Updated 5 years ago
- ☆17Updated last year
- PyTorch implementation of Variational Diffusion Models.☆78Updated 11 months ago