mali19064 / LSTM-CRF-pytorch-fasterLinks
A more than 1000X faster paralleled LSTM-CRF implementation modified from the slower version in the Pytorch official tutorial (URL//pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html).
☆204Updated 4 years ago
Alternatives and similar repositories for LSTM-CRF-pytorch-faster
Users that are interested in LSTM-CRF-pytorch-faster are comparing it to the libraries listed below
Sorting:
- Chinese NLP Data Augmentation, BERT Contextual Augmentation☆111Updated 3 years ago
- using bilstm-crf,bert and other methods to do sequence tagging task☆414Updated 2 years ago
- Reject complicated operations for incorporating lexicon for Chinese NER.☆437Updated 3 years ago
- Using pre-trained BERT models for Chinese and English NER with 🤗Transformers☆137Updated 4 years ago
- Chinese NER using Lattice LSTM. Reproduction for ACL 2018 paper.☆130Updated 5 years ago
- This repo contains a PyTorch implementation of a BiLSTM-CRF model for named entity recognition task.☆120Updated 6 years ago
- some baselines for lic2020 (http://lic2020.cipsc.org.cn/)☆219Updated 5 years ago
- Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"☆346Updated 3 years ago
- ☆157Updated 4 years ago
- Data Augmentation for NLP. NLP数据增强☆296Updated 4 years ago
- pytorch中文语言模型预训练☆389Updated 5 years ago
- Hierarchically-Refined Label Attention Network for Sequence Labeling☆293Updated 4 years ago
- 从头训练MASK BERT☆138Updated 2 years ago
- Bert finetune for CMRC2018, CJRC, DRCD, CHID, C3☆184Updated 5 years ago
- BERT distillation(基于BERT的蒸馏实验 )☆314Updated 5 years ago
- Source code for ACL 2019 paper "Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge"☆273Updated 5 years ago
- torchtext使用总结,从零开始逐步实现了torchtext文本预处理过程,包括截断补长,词表构建,使用预训练词向量,构建可用于PyTorch的可迭代数据等步骤。并结合Pytorch实现LSTM.☆176Updated 6 years ago
- Codes for "TENER: Adapting Transformer Encoder for Named Entity Recognition"☆377Updated 5 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆129Updated 4 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆138Updated 3 years ago
- 对ACL2020 FastBERT论文的复现,论文地址//arxiv.org/pdf/2004.02178.pdf☆194Updated 3 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆262Updated 4 years ago
- baidu aistudio event extraction competition☆225Updated 2 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆185Updated 2 years ago
- Chinese Language Generation Evaluation 中文生成任务基准测评☆248Updated 4 years ago
- 全局指针统一处理嵌套与非嵌套NER☆255Updated 4 years ago
- 整理一下在keras中使用T5模型的要点☆174Updated 3 years ago
- ☆92Updated 5 years ago
- ☆346Updated 5 years ago
- TensorFlow code and pre-trained models for BERT and ERNIE☆147Updated 6 years ago