lbwnbZx / EEG_MI_wavelet_CNN_Test
基于小波变换和卷积神经网络的脑电运动成像信号分类
☆39Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for EEG_MI_wavelet_CNN_Test
- Clasificación de señales de EEG de imaginación motora y calculo mental con redes neuronales convolucionales y redes neuronales recurrente…☆48Updated 2 years ago
- 运动想象分类模型---ATCNet,源代码融合了关于EEGNet,DeepConvNet,ShallowConvNet等多种典型模型作对比☆23Updated last year
- Feature extraction for EEG signals☆27Updated 4 years ago
- Using Deep Learning for Emotion Classification on EEG signals (SEED Dataset). CNN, RNN, Hybrid model, and Ensemble☆62Updated 3 years ago
- A CNN + LSTM architecture to predict seizure from EEG data☆43Updated last year
- Using wavelet transform to extract time-frequency features of motor imagery EEG signals, and classify it by convolutional neural network☆103Updated 5 years ago
- code for LMDA☆66Updated last year
- This toolbox offers 30 types of EEG feature extraction methods (HA, HM, HC, and etc.) for Electroencephalogram (EEG) applications.☆74Updated 3 years ago
- 基于单通道脑电信号的自动睡眠分期研究(Automatic Sleep Staging Based on EEG Signal using Deep Network)☆24Updated last year
- An all-in-one EEG feature extraction toobox, including statistical features, Hjorth parameters, entropy, nonlinear features, power spectr…☆28Updated 11 months ago
- An EEG dichotomy program file , using CSP and SVM.☆21Updated 4 years ago
- i. A practical application of Transformer (ViT) on 2-D physiological signal (EEG) classification tasks. Also could be tried with EMG, EOG…☆18Updated 3 years ago
- ☆60Updated 2 years ago
- A list of papers for motor imagery using machine learning/deep learning.☆60Updated 3 years ago
- Clasificacion de imagenes motoras en señales EEG con CNN, LSTM y otros clasificadores☆50Updated 3 years ago
- 使用Transformer和CNN网络对脑电运动进行分类☆13Updated last year
- FBCNet: An Efficient Multi-view Convolutional Neural Network for Brain-Computer Interface☆120Updated 11 months ago
- ☆41Updated 2 years ago
- Repetition code of the model for the paper "EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks" in pytorch☆89Updated last year
- Multisource Transfer Learning for Cross- Subject EEG Emotion Recognition☆36Updated 4 years ago
- EEG Data Classification with CNN, LSTM/GRU, and Mixed LSTM Models☆36Updated 5 years ago
- Classification of BCI competition VI dataset 2a using ANN by applying WPD and CSP for feature extraction☆81Updated 2 years ago
- Some studies regarding the selection of optimal channels in a BCI based on motor imagery☆11Updated last year
- 本科毕业设计,基于Transformer的运动想象脑电信号分类,采用CNN+Transformer框架,CNN提取局部时间空间特征,Transformer提取全局依赖☆23Updated last year
- This model replaces the original CompactCNN with a Transformer model. It is designed to classify 1D EEG signals for the purpose of dr…☆10Updated last year
- Code to accompany our International Conference on Pattern Recognition (ICPR) paper entitled - Leveraging Synthetic Subject Invariant EEG …☆40Updated 5 months ago
- Preprocesamiento de BCI Competition IV data set 2a☆11Updated 4 years ago
- pytorch implementation of EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks☆69Updated last year
- Construct a model, which contains channel-attention, CNN, LSTM, self-attention, to classify EEG data;☆9Updated 2 years ago
- 在 SEED 数据集上做 EEG 情绪识别☆99Updated 4 years ago