lassestahnke / cm2013_sleep_stagingLinks
Project to predict sleep stages based on EEG, ECG, EOG data. Signals are filtered using different methods (Wavelet, Butterworth). The prediction was done using feature extraction in combination with SVM, Shallow NN and CNN.
☆11Updated 3 years ago
Alternatives and similar repositories for cm2013_sleep_staging
Users that are interested in cm2013_sleep_staging are comparing it to the libraries listed below
Sorting:
- This toolbox offers 30 types of EEG feature extraction methods (HA, HM, HC, and etc.) for Electroencephalogram (EEG) applications.☆89Updated 4 years ago
- Source Code for "Adaptive Transfer Learning with Deep CNN for EEG Motor Imagery Classification".☆93Updated 2 years ago
- Implementation of EEG signal classification.☆50Updated 9 years ago
- ☆36Updated 6 years ago
- Feature extraction for EEG signals☆29Updated 5 years ago
- Preprocesamiento de BCI Competition IV data set 2a☆11Updated 4 years ago
- Clasificacion de imagenes motoras en señales EEG con CNN, LSTM y otros clasificadores☆53Updated 4 years ago
- An EEG dichotomy program file , using CSP and SVM.☆24Updated 5 years ago
- 基于单通道脑电信号的自动睡眠分期研究(Automatic Sleep Staging Based on EEG Signal using Deep Network)☆32Updated 2 years ago
- ☆44Updated 6 years ago
- A Residual based Attention Model for EEG basedSleep Staging☆11Updated 3 years ago
- Some studies regarding the selection of optimal channels in a BCI based on motor imagery☆13Updated last year
- Official repository of EEG-Inception, a general-purpose and powerful deep convolutional neural network for EEG procesing☆45Updated last year
- Motor Imagery Classification based on EEG at Columbia Medical Center☆47Updated 4 years ago
- Emotion recognition can be achieved by obtaining signals from the brain by EEG . This test records the activity of the brain in form of w…☆121Updated 4 years ago
- FBCNet: An Efficient Multi-view Convolutional Neural Network for Brain-Computer Interface☆131Updated last year
- EEG data processing and it's convolution using AutoEncoder + CNN + RNN☆93Updated 7 years ago
- It is an emotion detection with EEG and ECG signals.☆41Updated 5 years ago
- PyTorch EEG emotion analysis using DEAP dataset☆86Updated 7 years ago
- EEG motor imagery classification using convolutional neural networks☆36Updated 2 years ago
- Emotion Recognition from EEG Signals using the DEAP dataset with 86.4% accuracy. Applied multiple machine learning models and implemented…☆87Updated 5 years ago
- Using Deep Learning for Emotion Classification on EEG signals (SEED Dataset). CNN, RNN, Hybrid model, and Ensemble☆75Updated 3 years ago
- EEG Sleep stage classification using CNN with Keras☆174Updated last year
- Clasificación de señales de EEG de imaginación motora y calculo mental con redes neuronales convolucionales y redes neuronales recurrente…☆47Updated 2 years ago
- Application prepares data to learning process. Including preprocessing, cleaning, reformating, feature extraction using PyEEG library and…☆31Updated 4 years ago
- EEG Emotion classification using the DEAP pre-processed data☆148Updated 6 years ago
- ☆71Updated 3 years ago
- LSTM-based neural network system to predict EEG signals☆29Updated 6 years ago
- Using wavelet transform to extract time-frequency features of motor imagery EEG signals, and classify it by convolutional neural network☆108Updated 5 years ago
- A list of papers for motor imagery using machine learning/deep learning.☆79Updated 4 years ago