jllan / sentence_similarity
多种句子相似度算法
☆36Updated 6 years ago
Alternatives and similar repositories for sentence_similarity:
Users that are interested in sentence_similarity are comparing it to the libraries listed below
- 基于bert的ner,使用bilstm+crf☆32Updated 3 years ago
- 基于siamese-lstm的中文句子相似度计算☆130Updated 6 years ago
- siamese dssm sentence_similarity sentece_similarity_rank tensorflow☆60Updated 6 years ago
- 基于句法分析的命名实体关系抽取程序☆65Updated 9 years ago
- A Keras Implementation of Attention_based Siamese Manhattan LSTM☆55Updated 6 years ago
- 基于ELMo, tensorflow的中文命名实体标注 Chinese Named Entity Recognition Based on ELMo☆21Updated 5 years ago
- 第三届魔镜杯大赛, 智能客服聊天机器人真实数据, 提高智能客服的识别能力和服务质量☆38Updated 6 years ago
- 使用BERT模型进行文本分类,相似句子判断,以及词性标注☆89Updated 6 years ago
- 关键词抽取,神策杯2018高校算法大师赛比赛,solo 排名3/591☆65Updated 6 years ago
- 新词发现算法与同义词挖掘☆27Updated 7 years ago
- 2019达观杯 第六名代码☆44Updated 2 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 5 years ago
- 依存关系分析,NLP,自然语言处理☆85Updated 3 years ago
- ☆31Updated 6 years ago
- ☆44Updated 5 years ago
- Kaggle新赛(baseline)-基于BERT的fine-tuning方案+基于tensor2tensor的Transformer Encoder方案☆60Updated 6 years ago
- BDCI2017-让AI当法官,决赛第四(4/415)https://www.datafountain.cn/competitions/277/details☆120Updated 7 years ago
- 基于知识库的开放域问答系统的相关工作☆69Updated 6 years ago
- 本项目曾冲到全球第一,干货集锦见本页面最底部,另完整精致的纸质版《编程之法:面试和算法心得》已在京东/当当上销售☆40Updated 6 years ago
- Relation Extraction 中文关系提取☆72Updated 6 years ago
- 发现新词 无监督词库生成 医学词库生成 发现未登录词☆77Updated 4 years ago
- Code lab for NLP. Including doc2txt,tf-idf,cnn,text classify,hmm cws,crf ner.☆42Updated 6 years ago
- use ELMo in chinese environment☆104Updated 6 years ago
- python CRF++实现分词☆37Updated 6 years ago
- 之江-电商评论观点挖掘的比赛,基于pytorch-transformers版本,暂时只实现了BERT做aspect+opinion+属性分类+情感极性的联合标注,还未加上CRF。☆33Updated 5 years ago
- 基于深度学习的自然语言处理库☆36Updated 7 years ago
- Chinese new word discovery☆42Updated 6 months ago
- 新词发现 基于词频、凝聚系数和左右邻接信息熵☆123Updated 5 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆92Updated 5 years ago
- CSDN博客的关键词提取算法,融合TF,IDF,词性,位置等多特征。该项目用于参加2017 SMP用户画像测评,排名第四,在验证集中精度为59.9%,在最终集中精度为58.7%。启发式的方法,通用性强。☆30Updated 7 years ago