jiajunhua / dragen1860-TensorFlow-2.x-TutorialsLinks
☆28Updated 5 years ago
Alternatives and similar repositories for dragen1860-TensorFlow-2.x-Tutorials
Users that are interested in dragen1860-TensorFlow-2.x-Tutorials are comparing it to the libraries listed below
Sorting:
- ☆114Updated 5 years ago
- 学习笔记代码☆103Updated 5 years ago
- sample model deployment code☆148Updated 2 years ago
- ☆48Updated last year
- 这是我在小象学院课程《深度学习之TensorFlow高级编程》的课程代码☆112Updated 3 years ago
- 《走向TensorFlow2.0:深度学习应用编程快速入门》的案例代码☆98Updated 4 years ago
- TensorFlow2.0 官方教程翻译,基本概念讲解、实战项目、TensorFlow2.0编程技巧。☆201Updated 5 years ago
- 用于存储NLP常用模型☆145Updated 5 years ago
- TF2.0 / TensorFlow 2.0 / TensorFlow2.0 官方文档中文版☆229Updated 4 years ago
- seq2seq learning with TensorFlow☆58Updated 6 years ago
- 龙曲良《TensorFlow深度学习》学习笔记及代码,采用TensorFlow2.0.0版本☆175Updated 2 years ago
- JULYEDU PyTorch Course☆1,085Updated 4 years ago
- my deep learning time☆21Updated 6 years ago
- ☆64Updated last week
- ☆59Updated 5 years ago
- 个人博客 (https://fancyerii.github.io/) 文章的代码☆184Updated last year
- The source code and dataset about <Deep Learning - Best Practices on TensorFlow Engineering Implementation>☆218Updated 4 years ago
- ’达观杯‘文本智能处理挑战赛,文本分类任务的实现,包括一些传统的监督学习算法和深度学习算法,主要基于sklearn/xgb/lgb/pytorch包实现。☆258Updated 6 years ago
- tensorflow2中文教程,持续更新(当前版本:tensorflow2.0),tag: tensorflow 2.0 tutorials☆15Updated 5 years ago
- Awesome resources of yousan.ai(closely related to deep learning).☆1,423Updated 11 months ago
- here to design a dialogue-system(robot)☆19Updated 5 years ago
- 基于深度学习识别THCHS30数据集☆14Updated 3 years ago
- 500+ spark short code examples in jupyter notebook!☆101Updated 5 years ago
- python | 高效使用统计语言模型kenlm:新词发现、分词、智能纠错等☆164Updated 5 years ago
- ☆398Updated 3 years ago
- transformer的 encoder-decoder结构基于tensorflow实现的中文语音识别项目☆33Updated 4 years ago
- ☆34Updated 4 years ago
- 本项目是TensorFlow2.0学习笔记,主要参考官方文档,此外也添加个人许多个人使用心得体会等内容,本项目所有笔记也发布在博客园等平台,希望对你有所帮助。☆54Updated 5 years ago
- Awesome-pytorch-list 翻译工作进行中......☆1,774Updated 3 years ago
- 使用ALBERT预训练模型,用于识别文本中的时间,同时验证模型的预测耗时是否有显著提升。☆56Updated 5 years ago