huiandqinqin / cwru-data-py3
Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集
☆10Updated 2 years ago
Related projects ⓘ
Alternatives and complementary repositories for cwru-data-py3
- New GAN models in dataset of CWRU☆36Updated 2 years ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆108Updated 5 months ago
- ☆91Updated last year
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆34Updated 3 years ago
- Transfer learning☆48Updated 3 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆132Updated 2 years ago
- Implement GANs to generate time-series signals for imbalanced learning problem. The experiments are conducted using CWRU bearing data.☆74Updated 3 years ago
- ☆94Updated 5 years ago
- ☆92Updated 2 years ago
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆47Updated last year
- ☆45Updated 2 years ago
- Siamese network for bearing fault diagnosis☆84Updated 4 years ago
- A few shot learning repository for bearing fault diagnosis.☆64Updated last year
- ☆48Updated 10 months ago
- This code is about the implementation of Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Condit…☆132Updated 3 years ago
- A transfer learning fault diagnosis repository covering popular algorithms☆181Updated 3 months ago
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆91Updated 6 months ago
- ☆26Updated 3 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆32Updated last year
- The intelligent fault diagnosis methods of HNU IDG☆62Updated 2 years ago
- Implementation of categorical generative adversarial networks for unsupervised bearing fault diagnostics☆52Updated 2 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆36Updated last year
- Generalized Multiscale Feature Extraction for Remaining Useful Life Prediction of Bearings with Generative Adversarial Networks☆39Updated 2 years ago
- 基于深度学习的滚动轴承故障诊断方法☆170Updated 5 years ago
- ☆59Updated 5 years ago
- Using transformer to realize Bearing Fault Diagnosis☆52Updated last year
- ☆68Updated 2 years ago
- 基于迁移学习的离心泵滚动轴承故障自动识别方法研究☆16Updated 4 years ago
- Few-shot Transfer Learning for Intelligent Fault Diagnosis of Machine☆117Updated 4 years ago
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆32Updated 2 years ago