hikariming / virus-mask-datasetLinks
人员佩戴口罩检测数据集
☆86Updated 5 years ago
Alternatives and similar repositories for virus-mask-dataset
Users that are interested in virus-mask-dataset are comparing it to the libraries listed below
Sorting:
- 【口罩佩戴检测数据训练 | 开源口罩检测数据集和预训练模型】Train D/CIoU_YOLO_V3 by darknet for object detection☆59Updated 5 years ago
- sbd_mask☆149Updated 5 years ago
- 基于RetinaFace的目标检测方法,适用于人脸、缺陷、小目标、行人等☆111Updated 5 years ago
- yoloface大礼包 使用pytroch实现的基于yolov3的轻量级人脸检测(包含关键点)☆300Updated 3 years ago
- 设计的轻量级RFB进行行人检测,AP达到0.7993,参数量仅有3.1MB,200 FPS☆175Updated 5 years ago
- ☆67Updated 5 years ago
- 基于CenterNet训练的目标检测&人脸对齐&姿态估计模型☆286Updated 4 years ago
- provide pytorch model and ncnn model☆77Updated 5 years ago
- ncnn of yolov5 v5.0 branch☆86Updated 4 years ago
- 生成车牌识别数据集☆140Updated 2 years ago
- End to End Chinese License Plate Recognition☆81Updated 6 years ago
- Retinaface pytorch face-pose-detect face-key-point-detect☆36Updated 4 years ago
- MNN demo of Strongeryolo, including channel pruning, android support...☆103Updated 6 years ago
- 钢筋数量识别 baseline 0.98336☆86Updated 2 years ago
- Multi-line license plate recognition☆76Updated 6 years ago
- A keras version of real-time object detection network : mobilenet_v2_ssdlite☆80Updated 5 years ago
- arcface and retinaface model convert mxnet to onnx.☆62Updated 4 years ago
- 轻量级的车牌检测项目(支持车牌四角定位、矫正对齐)☆169Updated last year
- 基于4种轻量级深度卷积网络的无场景约束全自动车牌识别,轻量级车牌检测,轻量级车牌识别,pyqt5可视化界面☆69Updated 5 years ago
- 加入关键点的darknet训练框架,轻量级的人脸检测,支持ncnn推理☆213Updated 5 years ago
- A simple code for creating licence plate images and train e2e network☆149Updated 6 years ago
- openpose, yolov3 with tiny-tensorrt☆86Updated 4 years ago
- YOLOv5 C++ Implementation on Android using NCNN framework☆171Updated 5 years ago
- ☆84Updated 4 years ago
- 同时识别年龄与性别☆87Updated 6 years ago
- You can import this module directly☆55Updated 6 years ago
- some video with fighting and normal☆82Updated 5 years ago
- 中国车牌生成☆173Updated 6 years ago
- centernet_mobilenetv2 inference by ncnn☆65Updated 5 years ago
- 数钢筋demo,IOU 0.7 下,AP 90.6。训练只要不到十分钟,可以非常愉快的 玩耍☆33Updated 6 years ago