emilemathieu / escnn_jaxLinks
Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/
☆30Updated last year
Alternatives and similar repositories for escnn_jax
Users that are interested in escnn_jax are comparing it to the libraries listed below
Sorting:
- Code used by the "Clifford Group Equivariant Neural Networks" paper.☆83Updated last year
- Annotated implementations of equivariant (graph) neural networks in Jax: EGNN, SEGNN, NequIP.☆36Updated 3 months ago
- Tools for building equivariant polynomials on reductive Lie groups.☆32Updated last year
- Algorithms for computations on random manifolds made easier☆90Updated last year
- SE(3) Equivariant Augmented Coupling Flows. NeurIPS 2023.☆24Updated last year
- Implicit Convolutional Kernels for Steerable CNNs [NeurIPS'23]☆28Updated 4 months ago
- Lie Algebra Convolutional Network implementation☆43Updated 3 years ago
- Implementation of various equivariant models in JAX☆12Updated last year
- ☆52Updated 2 years ago
- Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems [ICML'25]☆66Updated this week
- PySCF on IPU☆42Updated last year
- Flow Annealed Importance Sampling Bootstrap (FAB). ICLR 2023.☆58Updated last year
- Steerable E(3) GNN in jax☆24Updated last year
- Lagrangian formulation of Doob's h-transform allowing for efficient rare event sampling☆49Updated 3 months ago
- A collection of graph neural networks implementations in JAX☆32Updated last year
- Graph neural networks in JAX.☆67Updated last year
- Implementation of Action Matching☆44Updated 2 years ago
- jax library for E3 Equivariant Neural Networks☆207Updated 5 months ago
- Normalizing Flows using JAX☆83Updated last year
- ☆30Updated 2 years ago
- Clifford-Steerable Convolutional Neural Networks [ICML'24]☆47Updated last month
- Code for NeurIPS 2024 paper: "Noether's razor: Learning Conserved Quantities" by Tycho F. A. van der Ouderaa, Mark van der Wilk, Pim de H…☆10Updated 8 months ago
- ☆34Updated 3 years ago
- A minimal implementation of Equivariant Neural Fields (https://arxiv.org/abs/2406.05753).☆25Updated 4 months ago
- Riemannian Optimization Using JAX☆49Updated last year
- A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks☆131Updated 3 years ago
- Fast, Expressive SE(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space.☆83Updated last year
- Wraps PyTorch code in a JIT-compatible way for JAX. Supports automatically defining gradients for reverse-mode AutoDiff.☆54Updated last month
- A library for programmatically generating equivariant layers through constraint solving☆268Updated 2 years ago
- Matrix-free linear algebra in JAX.☆125Updated last month