chenlamei / MobileVit_TensorRTLinks
TensorRT 2022 亚军方案,tensorrt加速mobilevit模型
☆68Updated 3 years ago
Alternatives and similar repositories for MobileVit_TensorRT
Users that are interested in MobileVit_TensorRT are comparing it to the libraries listed below
Sorting:
- algorithm-cpp projects☆80Updated 2 years ago
- ☆148Updated last year
- yolov5 tensorrt int8量化方法汇总☆82Updated last year
- An onnx-based quantitation tool.☆71Updated last year
- 该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。☆69Updated last year
- Using pattern matcher in onnx model to match and replace subgraphs.☆81Updated last year
- ☆114Updated last year
- ☆47Updated 2 years ago
- ☆79Updated 2 years ago
- 使用pytorch_quantization对yolov8进行量化☆117Updated last year
- This is 8-bit quantization sample for yolov5. Both PTQ, QAT and Partial Quantization have been implemented, and present the results based…☆109Updated 3 years ago
- Speed up image preprocess with cuda when handle image or tensorrt inference☆77Updated last month
- async inference for machine learning model☆26Updated 2 years ago
- ☆116Updated 2 years ago
- 跟着Tensorrt_pro学习各种知识☆40Updated 2 years ago
- learning-cuda-trt☆118Updated 2 years ago
- ☆52Updated 2 years ago
- Yolov5 inference on NVDec hardware decoder☆87Updated 3 years ago
- TensorRT 2022复赛方案: 首个基于Transformer的图像重建模型MST++的TensorRT模型推断优化☆142Updated 3 years ago
- NVIDIA-阿里2021 TRT比赛 `二等奖` 代码提交 团队:美迪康 AI Lab☆171Updated 3 years ago
- ☆131Updated last year
- ☆43Updated 3 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆50Updated 2 years ago
- tensorrt int8 量化yolov5 onnx模型☆185Updated 4 years ago
- ☆57Updated 2 years ago
- This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.☆56Updated 2 years ago
- Some tools to operate PaddlePaddle model☆73Updated 3 years ago
- www.giantpandacv.com☆152Updated last year
- nerf☆41Updated 3 years ago
- A simple tool that can generate TensorRT plugin code quickly.☆235Updated 2 years ago