aws-samples / generating-synthetic-datasets-for-evaluating-retrieval-augmented-generation-systemsLinks
The repository guides you through generating a synthetic dataset for a QA-RAG application using the Bedrock API, Python and Langchain.
☆20Updated last year
Alternatives and similar repositories for generating-synthetic-datasets-for-evaluating-retrieval-augmented-generation-systems
Users that are interested in generating-synthetic-datasets-for-evaluating-retrieval-augmented-generation-systems are comparing it to the libraries listed below
Sorting:
- ☆22Updated this week
- Amazon Q Business enables querying structured data using natural language, leveraging schemas and metadata. This example demonstrates an …☆18Updated last year
- ☆14Updated last year
- ☆10Updated 8 months ago
- ☆14Updated 2 years ago
- ☆45Updated 9 months ago
- Operational Data Processing Framework developed using AWS Glue and Apache Hudi. This framework is suitable for Data Lake and Modern Data …☆24Updated 2 years ago
- ☆17Updated last year
- ☆18Updated 2 years ago
- ☆49Updated last year
- ☆24Updated last month
- ☆24Updated last year
- ☆20Updated last year
- ☆16Updated last year
- ☆46Updated 7 months ago
- ☆15Updated last year
- ☆27Updated last year
- End to end example of a Retail Agent implemented with agents for Amazon Bedrock☆36Updated last year
- Sample solution to build a deployment pipeline for Amazon SageMaker.☆13Updated 3 years ago
- aws-solutions-library-samples / guidance-for-conversational-chatbots-using-retrieval-augmented-generation-on-awsThis Guidance demonstrates how to combine Retrieval Augmented Generation (RAG) with AWS services to build generative AI applications.☆42Updated last year
- ☆42Updated 7 months ago
- ☆44Updated 4 months ago
- ☆25Updated last year
- ☆54Updated last year
- ☆14Updated 6 months ago
- ☆18Updated last month
- Learn to build custom prompts and tools for LangChain agents☆40Updated last year
- ☆14Updated 7 months ago
- ☆13Updated last year
- ☆20Updated 3 years ago