airockchip / rknn_model_zooLinks
☆2,109Updated 9 months ago
Alternatives and similar repositories for rknn_model_zoo
Users that are interested in rknn_model_zoo are comparing it to the libraries listed below
Sorting:
- ☆2,497Updated 5 months ago
- ☆1,088Updated last year
- A simple demo of yolov5s running on rk3588/3588s using c++ (about 142 frames). / 一个使用c++在rk3588/3588s上运行的yolov5s简单demo(142帧/s)。☆693Updated last year
- ☆797Updated 2 years ago
- A simple demo of yolov5s running on rk3588/3588s using Python (about 72 frames). / 一个使用Python在rk3588/3588s上运行的yolov5s简单demo(大约72帧/s)。☆340Updated 2 years ago
- NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite☆297Updated last year
- The project is a multi-threaded inference demo of Yolo running on the RK3588 platform, which has been adapted for reading video files and…☆413Updated 5 months ago
- ☆939Updated 2 years ago
- Track vehicles and persons on rk3588 / rk3399pro.☆444Updated 2 years ago
- ☆1,172Updated last month
- ☆181Updated 11 months ago
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆264Updated 2 months ago
- ☆269Updated 2 years ago
- ☆494Updated last month
- ☆463Updated this week
- ☆87Updated 4 months ago
- ☆53Updated 2 years ago
- YOLOv8 using TensorRT accelerate !☆1,725Updated 8 months ago
- YOLOv10: Real-Time End-to-End Object Detection☆17Updated last year
- Real time yolov8 Android demo by ncnn☆567Updated last year
- 高性能 高精度 大陆车牌、港澳车牌、台湾车牌 韩国车牌(South Korea LPR)识别 代码开源,方便移植嵌入式和安卓端使用,支持12种车牌识别,支持港澳车牌识别,支持大角度车牌识别,准确率高达99%+☆491Updated 2 months ago
- tensorrt for yolo series (YOLOv11,YOLOv10,YOLOv9,YOLOv8,YOLOv7,YOLOv6,YOLOX,YOLOv5), nms plugin support☆1,138Updated 2 months ago
- FFmpeg with async and zero-copy Rockchip MPP & RGA support☆1,035Updated 2 months ago
- A new tensorrt integrate. Easy to integrate many tasks☆446Updated 2 years ago
- This project implements YOLOv11 inference on the RK3588 platform using the RKNN framework. With deep optimization of the official code an…☆64Updated last year
- Useful resources for developing with the RK3588.☆413Updated last month
- A newly designed ultra lightweight anchor free target detection algorithm, weight only 250K parameters, reduces the time consumption by …☆845Updated 2 years ago
- Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smar…☆922Updated last year
- ☆12Updated last year
- yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)☆61Updated 2 years ago