ZhugeKongan / TorchCAM
CAM', 'ScoreCAM', 'SSCAM', 'ISCAM' 'GradCAM', 'GradCAMpp', 'SmoothGradCAMpp', 'XGradCAM', 'LayerCAM' using by PyTorch.
☆72Updated 3 years ago
Alternatives and similar repositories for TorchCAM:
Users that are interested in TorchCAM are comparing it to the libraries listed below
- 可视化特征图教程☆70Updated 2 years ago
- Awesome Fine-grained Visual Classification☆226Updated last year
- [TNNLS 2025] TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition☆172Updated 2 weeks ago
- ☆36Updated last year
- ☆143Updated last year
- GroupMixAttention and GroupMixFormer☆115Updated last year
- ☆153Updated 3 years ago
- CMT Pytorch implementation of our CVPR 2022 paper CMT: Convolutional Neural Networks Meet Vision Transformers (https://arxiv.org/pdf/2107…☆97Updated 2 years ago
- 可视化神经网络☆39Updated 2 years ago
- ☆95Updated 3 years ago
- An unofficial implementation for Detecting Camouflaged Object in Frequency Domain, CVPR 2022 in PyTorch.☆75Updated 2 years ago
- Pytorch implementation for "A Novel Plug-in Module for Fine-Grained Visual Classification". fine-grained visual classification task.☆197Updated last year
- ECCV2022 论文/代码/解读合集,极市团队整理☆236Updated 2 years ago
- FcaNet: Frequency Channel Attention Networks☆279Updated 4 years ago
- ☆120Updated last year
- ☆141Updated 6 months ago
- The official pytorch implemention of our ICML-2021 paper "SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Netwo…☆435Updated 2 years ago
- ☆298Updated 3 years ago
- fpn_resnet、resnet-se、resnet-cbam☆33Updated 5 years ago
- Vision Transformers with Hierarchical Attention☆99Updated 6 months ago
- The official code of "Rethinking Local Perception in Lightweight Vision Transformer"☆85Updated last year
- ☆83Updated last year
- Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks☆259Updated 3 years ago
- CMT: Convolutional Neural Networks Meet Vision Transformers☆119Updated 3 years ago
- ☆136Updated 9 months ago
- We provide an easy way for visualizing☆87Updated 3 years ago
- Official ImageNet Model repository☆246Updated last year
- MAE for CIFAR,由于可用资源有限,我们仅在 cifar10 上测试模型。我们主要想重现这样的结果:使用 MAE 预训练 ViT 可以比直接使用标签进行监督学习训练获得更好的结果。这应该是自我监督学习比监督学习更有效的数据的证据。☆69Updated last year
- The official code for our TIP paper 'LayerCAM: Exploring Hierarchical Class Activation Maps for Localization'☆124Updated 3 years ago
- Scattering Vision Transformer☆50Updated last year