YINYIPENG-EN / deeplearning_channel_pruneLinks
pytorch环境下卷积层的通道剪枝
☆12Updated 2 years ago
Alternatives and similar repositories for deeplearning_channel_prune
Users that are interested in deeplearning_channel_prune are comparing it to the libraries listed below
Sorting:
- ☆585Updated 4 years ago
- 对yolov4进行通道剪枝☆15Updated 3 years ago
- 本项目支持对剪枝后的yolov5模型进行知识蒸馏训练(This project supports knowledge distillation training for the pruned YOLOv5 model)☆108Updated 2 years ago
- yolov5 prune,Support V2, V3, V4 and V6 versions of yolov5☆583Updated 4 years ago
- Multi-backbone, Prune, Quantization, KD☆156Updated 3 years ago
- yolov5 5.0 version distillation || yolov5 5.0版本知识蒸馏,yolov5l >> yolov5s☆164Updated 4 years ago
- YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite☆26Updated 3 years ago
- ☆137Updated 3 years ago
- 这是一个yolov7-tiny-pytorch的源码,可以用于训练自己的模型。☆215Updated 2 years ago
- mobilev2-yolov5s剪枝、蒸馏,支持ncnn,tensorRT部署。ultra-light but better performence!☆858Updated 3 years ago
- Yolov5 distillation training | Yolov5知识蒸馏训练,支持训练自己的数据☆227Updated 3 years ago
- ☆92Updated 4 years ago
- ☆10Updated 4 years ago
- 知识蒸馏复现相关☆27Updated 3 years ago
- YOLOv5 Series Multi-backbone(TPH-YOLOv5, Ghostnet, ShuffleNetv2, Mobilenetv3Small, EfficientNetLite, PP-LCNet, SwinTransformer YOLO), Mod…☆1,019Updated 3 years ago
- 这是一个yolov5-v6.1-pytorch的源码,可以用于训练自己的模型。☆135Updated 2 years ago
- 这是一个YoloV4-tiny-pytorch的源码,可以用于训练自己的模型。☆828Updated 2 years ago
- A new version of YOLOv1☆207Updated 3 years ago
- yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)☆110Updated 4 years ago
- YOLOv5 in TF2 > TFLite > ONNX > TensorRT☆389Updated 3 years ago
- 这是一个mobilenet-yolov4的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。☆380Updated 2 years ago
- yolov5 pruning (SFP Pruning、Nework Slimming)☆19Updated 4 years ago
- ☆181Updated 2 years ago
- ☆63Updated 4 years ago
- 一个基于yolov5-5.0的中文注释版本!☆674Updated 3 years ago
- 实现对YOLOX的剪枝操作,添加了卷积层和BN层融合推理,添加中间层可视化功能,可实现预测和训练日志保存☆46Updated 2 years ago
- YOLOv5的轻量化改进(蜂巢检测项目)☆75Updated 3 years ago
- ☆39Updated 2 years ago
- B站Efficient-Neural-Network学习分享的配套代码☆304Updated 4 years ago
- ☆103Updated 2 years ago