YINYIPENG-EN / deeplearning_channel_prune
pytorch环境下卷积层的通道剪枝
☆10Updated last year
Alternatives and similar repositories for deeplearning_channel_prune:
Users that are interested in deeplearning_channel_prune are comparing it to the libraries listed below
- 对yolov4进行通道剪枝☆15Updated 2 years ago
- ☆569Updated 3 years ago
- Multi-backbone, Prune, Quantization, KD☆158Updated 2 years ago
- yolov5 5.0 version distillation || yolov5 5.0版本知识蒸馏,yolov5l >> yolov5s☆159Updated 3 years ago
- 本项目支持对剪枝后的yolov5模型进行知识蒸馏训练(This project supports knowledge distillation training for the pruned YOLOv5 model)☆96Updated last year
- 这是一个yolov7-tiny-pytorch的源码,可以用于训练自己的模型。☆202Updated last year
- mobilev2-yolov5s剪枝、蒸馏,支持ncnn,tensorRT部署。ultra-light but better performence!☆844Updated 2 years ago
- YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite☆26Updated 3 years ago
- yolov5 prune,Support V2, V3, V4 and V6 versions of yolov5☆573Updated 3 years ago
- 这是一个mobilenet-yolov4的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。☆375Updated last year
- yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)☆97Updated 3 years ago
- 这是一个yolov5-v6.1-pytorch的源码,可以用于训练自己的模型。☆122Updated last year
- ☆37Updated last year
- ☆91Updated 3 years ago
- ☆63Updated 3 years ago
- ☆68Updated 3 years ago
- ☆10Updated 3 years ago
- YOLOv5 in TF2 > TFLite > ONNX > TensorRT☆376Updated 2 years ago
- 实现对YOLOX的剪枝操作,添加了卷积层和BN层融合推理,添加中间层可视化功能,可实现预测和训练日志保存☆44Updated last year
- 知识蒸馏复现相关☆25Updated 2 years ago
- PyTorch implements `MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications` paper.☆11Updated last year
- B站Efficient-Neural-Network学习分享的配套代码☆296Updated 3 years ago
- [T-PAMI'23] PAGCP for the compression of YOLOv5☆116Updated last year
- YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite☆67Updated 3 years ago
- YOLOv5的轻量化改进(蜂巢检测项目)☆74Updated 2 years ago
- ☆140Updated 2 years ago
- Using model pruning method to obtain compact models Pruned-YOLOv5 based on YOLOv5.☆58Updated 3 years ago
- ☆92Updated last year
- ☆171Updated 2 years ago
- annotations of yolov5-5.0☆232Updated 3 years ago