UltronAI / pytorch-caffe
Pytorch2Caffe & Caffe2Pytorch
☆8Updated 6 years ago
Alternatives and similar repositories for pytorch-caffe:
Users that are interested in pytorch-caffe are comparing it to the libraries listed below
- A tool for PytorchToCaffe,fork form https://github.com/xxradon/PytorchToCaffe☆11Updated 5 years ago
- ☆42Updated 4 years ago
- ☆25Updated 5 years ago
- TensorRT half precision inference routine on a API-based TensorRT model☆13Updated 6 years ago
- convert pytorch trained yolo model to ncnn for Flexible deployment☆10Updated 6 years ago
- This is an official enhanced PyTorch implementation of FSD based on the idea of LFFD.☆11Updated 5 years ago
- mxnet-Gluon implementation of PSENet text detector (Shape Robust Text Detection with Progressive Scale Expansion Network)☆18Updated 5 years ago
- A light and fast one class detection framework for edge devices.☆18Updated 5 years ago
- ☆14Updated 4 years ago
- From pytorch-mobilenetv3 to caffe☆15Updated 5 years ago
- using pvanet framework train mobilenet-v2 for objects detection, papaer: https://arxiv.org/abs/1611.08588☆13Updated 5 years ago
- ☆34Updated 5 years ago
- tensorRT retinaface mobilenet☆42Updated 5 years ago
- This is the re-implementation of group normalization in MXNet Symbol,Module and Gluon☆23Updated 5 years ago
- pytorch based refineDet learning base on https://github.com/luuuyi/RefineDet.PyTorch☆8Updated 5 years ago
- A Gluon implement of MobileNetV3☆28Updated 5 years ago
- siamise networks☆14Updated 7 years ago
- A mxnet object detection library contains implementations of RFCN, FCOS, RetinaNet, OpenPose, etc..☆31Updated 4 years ago
- ☆26Updated 3 years ago
- A caffe implementation of Mnasnet: MnasNet: Platform-Aware Neural Architecture Search for Mobile.☆52Updated 6 years ago
- A pytorch implementation of yolov3☆24Updated 5 years ago
- train Snet(by thundernet) in imagenet☆18Updated 4 years ago
- GHM_Detection☆16Updated 5 years ago
- Pilgrim Project: torch2trt, quick convert your pytorch model to TensorRT engine.☆19Updated 4 years ago