TJBioMedNLP / chip2019task3Links
第五届中国健康信息处理会议(CHIP2019)- 评测三:临床试验筛选标准短文本分类
☆39Updated 3 years ago
Alternatives and similar repositories for chip2019task3
Users that are interested in chip2019task3 are comparing it to the libraries listed below
Sorting:
- SMedBERT: A Knowledge-Enhanced Pre-trained Language Model withStructured Semantics for Medical Text Mining☆83Updated 3 years ago
- The data and codes for the baseline setting of medical chatbox.☆48Updated 4 years ago
- CHIP2021-Task3-临床术语标准化任务-开源代码☆45Updated 3 years ago
- 本项目开源硕士毕业论文“BERT模型在中文临床自然语言处理中的 应用探索与研究”相关模型☆118Updated 4 years ago
- CHIP2020 Task 3 术语标准化任务☆31Updated 4 years ago
- Chinese Medical Intent Dataset☆1Updated 2 years ago
- CBLUE-阿里天池中文医疗NLP打榜Baseline☆37Updated 3 years ago
- A Chinese medical question answering dataset☆65Updated 5 years ago
- This is the dataset for Chinese community medical question answering.☆106Updated 5 years ago
- Chinese Medical Dialogue Dataset for COVID19 Consultant☆18Updated 5 years ago
- pytorch Efficient GlobalPointer☆56Updated 3 years ago
- 中文医疗命名实体识别☆37Updated 4 years ago
- Biomedical NLP Corpus or Datasets.☆62Updated 3 years ago
- 论文复现《Named Entity Recognition as Dependency Parsing》☆130Updated 4 years ago
- “万创杯”中医药天池大数据竞赛——中医文献问题生成挑战 决赛 第一名方案☆135Updated 4 years ago
- CMeEE/CBLUE/NER实体识别☆131Updated 3 years ago
- Apply the Circular to the Pretraining Model☆37Updated 3 years ago
- 苏神SPACE pytorch版本复现☆42Updated 3 years ago
- 百度2021年语言与智能技术竞赛机器阅读理解torch版baseline☆53Updated 4 years ago
- Code for Label Semantics for Few Shot Named Entity Recognition☆55Updated 2 years ago
- Multi-Label Text Classification Based On Bert☆22Updated 2 years ago
- 中文生物医学自然语言处理(Chinese-BioNLP)☆163Updated 4 years ago
- 基于PaddleNLP开源的抽取式UIE进行医学命名实体识别(torch实现)☆43Updated 2 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year
- Chinese clinical named entity recognition using pre-trained BERT model☆123Updated 4 years ago
- 使用多头的思想来进行命名实体识别☆33Updated 4 years ago
- Efficient-GlobalPointer的关系抽取任务☆23Updated 3 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- GlobalPointer的优化版/NER实体识别☆121Updated 3 years ago
- TIANCHI-小布助手对话短文本语义匹配BERT baseline☆32Updated 4 years ago