Quantmetry / pipeasy-spark
an easy way to define preprocessing data pipeline (similar to sklean-pandas but for Spark ML)
☆17Updated 5 years ago
Related projects ⓘ
Alternatives and complementary repositories for pipeasy-spark
- A list of repositories commonly used @ Quantmetry☆14Updated 5 years ago
- Initier la mise à disposition, pour tout citoyen, de techniques d’Intelligence Artificielle destinées à appréhender le nombre important d…☆12Updated 3 months ago
- Embed categorical variables via neural networks.☆59Updated last year
- A package for data science practitioners. This library implements a number of helpful, common data transformations with a scikit-learn fr…☆55Updated 3 years ago
- this repo might get accepted☆29Updated 3 years ago
- Model Error Analysis for scikit-learn models.☆28Updated 2 years ago
- Hierarchical Time Series Forecasting using Prophet☆143Updated 3 years ago
- Supervised forecasting of sequential data in Python.☆55Updated 5 years ago
- Hierarchical Time Series Forecasting with a familiar API☆223Updated last year
- Implementation of the conjugate prior table for Bayesian Statistics☆52Updated 3 months ago
- General Interpretability Package☆58Updated last year
- Repository for the research and implementation of categorical encoding into a Featuretools-compatible Python library☆50Updated 2 years ago
- A toolbox for fair and explainable machine learning☆53Updated 5 months ago
- python library for automated dataset normalization☆112Updated last year
- Spark implementation of computing Shapley Values using monte-carlo approximation☆74Updated last year
- Better `keras` models for time series and beyond☆60Updated 10 months ago
- Automatically export Jupyter notebooks to various file formats (.py, .html, and more) on save.☆73Updated 9 months ago
- 🍦 Deployment tool for online machine learning models☆97Updated 2 years ago
- Example usage of scikit-hts☆56Updated 2 years ago
- ⬛ Python Individual Conditional Expectation Plot Toolbox☆165Updated 4 years ago
- The simplest way to deploy a machine learning model☆23Updated 2 years ago
- An extension of CatBoost to probabilistic modelling☆141Updated last year
- scikit-learn-inspired time series☆197Updated 8 months ago
- Practical ideas on securing machine learning models☆36Updated 3 years ago
- Tabular feature encoding pipelines for machine learning with options for string parsing, missing data infill, and stochastic perturbation…☆165Updated 2 months ago
- Helpers for scikit learn☆16Updated last year
- Learn Pyro through the M5 forecasting competition☆84Updated 4 years ago
- ☆47Updated 6 years ago
- ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any…☆100Updated 2 years ago
- Visualization ideas for data science☆19Updated 6 years ago