LLM360 / crystalcoder-data-prepLinks
Data preparation code for CrystalCoder 7B LLM
☆45Updated last year
Alternatives and similar repositories for crystalcoder-data-prep
Users that are interested in crystalcoder-data-prep are comparing it to the libraries listed below
Sorting:
- Pre-training code for CrystalCoder 7B LLM☆57Updated last year
- Data preparation code for Amber 7B LLM☆94Updated last year
- ☆55Updated last year
- ☆67Updated 10 months ago
- ☆39Updated last year
- Verifiers for LLM Reinforcement Learning☆80Updated 9 months ago
- Evaluating LLMs with CommonGen-Lite☆93Updated last year
- FuseAI Project☆87Updated last year
- Open Implementations of LLM Analyses☆107Updated last year
- ☆21Updated last year
- Implementation of "LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models"☆40Updated last year
- Official implementation for 'Extending LLMs’ Context Window with 100 Samples'☆81Updated 2 years ago
- A public implementation of the ReLoRA pretraining method, built on Lightning-AI's Pytorch Lightning suite.☆34Updated last year
- ☆23Updated last year
- [TMLR 2026] When Attention Collapses: How Degenerate Layers in LLMs Enable Smaller, Stronger Models☆121Updated 11 months ago
- Small and Efficient Mathematical Reasoning LLMs☆73Updated 2 years ago
- This repository contains the code for the paper: SirLLM: Streaming Infinite Retentive LLM☆60Updated last year
- ☆51Updated last year
- NeurIPS 2023 - Cappy: Outperforming and Boosting Large Multi-Task LMs with a Small Scorer☆46Updated last year
- Optimizing Causal LMs through GRPO with weighted reward functions and automated hyperparameter tuning using Optuna☆59Updated 3 months ago
- ☆61Updated last year
- A repository for research on medium sized language models.☆77Updated last year
- ☆48Updated last year
- Score LLM pretraining data with classifiers☆55Updated 2 years ago
- GPT-4 Level Conversational QA Trained In a Few Hours☆65Updated last year
- Astraios: Parameter-Efficient Instruction Tuning Code Language Models☆63Updated last year
- Implementation of the paper: "Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention" from Google in pyTO…☆58Updated last week
- LMTuner: Make the LLM Better for Everyone☆38Updated 2 years ago
- ☆35Updated 2 years ago
- ☆39Updated last year