KuNyaa / nlp-beginner-implementations
my implementations for nlp-beginner tasks
☆7Updated 6 years ago
Related projects ⓘ
Alternatives and complementary repositories for nlp-beginner-implementations
- PyTorch implement of BiLSTM-CRF for Chinese NER☆60Updated 5 years ago
- Basic exercises of chinese information processing☆33Updated 3 years ago
- For the new students who just join a NLP group☆27Updated 7 years ago
- 基于transformer的指针生成网络☆92Updated 3 years ago
- 法研杯2019 阅读理解赛道 top3☆150Updated last year
- A Sentence Cloze Dataset for Chinese Machine Reading Comprehension (CMRC 2019)☆126Updated 2 years ago
- implementation pointer-generator-network by pytorch and python3☆85Updated 4 years ago
- code for nlp beginner, including Sentiment Analysis, NER, NLI and Language Model.☆54Updated 5 years ago
- 论文复现《Named Entity Recognition as Dependency Parsing》☆126Updated 3 years ago
- motivation: 系统整理NLP各个方向需要阅读的论文☆34Updated 4 years ago
- 使用UniLM实现中文文本摘要☆43Updated 4 years ago
- transform multi-label classification as sentence pair task, with more training data and information☆178Updated 4 years ago
- baidu aistudio event extraction competition☆224Updated last year
- 使用BERT解决lic2019机器阅读理解☆89Updated 5 years ago
- Chinese Word Segmentation Using MM/CRF/Bi-LSTM/Bi-LSTM-CRF/BERT-LSTM, 中文分词,使用 最大词匹配、CRF(CRF++)、Bi-LSTM (+CRF)、BERT-Bi-LSTM☆30Updated 4 years ago
- 全球人工智能技术创新大赛-赛道三:小布助手对话短文本语义匹配☆37Updated 3 years ago
- 中国中文信息学会社会媒体处理专业委员会举办的2019届中文人机对话之自然语言理解竞赛☆74Updated 4 years ago
- ☆278Updated 3 years ago
- Bert finetune for CMRC2018, CJRC, DRCD, CHID, C3☆183Updated 4 years ago
- Chinese NER using Lattice LSTM. Reproduction for ACL 2018 paper.☆129Updated 4 years ago
- Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism☆200Updated 6 years ago
- Code for NAACL2019 paper "An Encoding Strategy Based Word-Character LSTM for Chinese NER".☆66Updated 5 years ago
- EMNLP-2019 paper: A Lexicon-based Graph Neural Network for Chinese NER.☆137Updated 4 months ago
- 吹逼我们是认真的☆44Updated last year
- 基于tensorflow1.x的预训练模型调用,支持单机多卡、梯度累积,XLA加速,混合精度。可灵活训练、验证、预测。☆58Updated 3 years ago
- 清博2019ccl幽默度识别第一名解决方案代码及说明☆39Updated 5 years ago
- pytorch版的命名实体识别,LSTM和LSTM_CRF☆26Updated 5 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆126Updated 4 years ago
- 该repo可用于将OntoNotes-5.0转换为Conll格式☆128Updated 2 years ago