Karbo123 / pytorch_grouped_gemmLinks
High Performance Grouped GEMM in PyTorch
☆32Updated 3 years ago
Alternatives and similar repositories for pytorch_grouped_gemm
Users that are interested in pytorch_grouped_gemm are comparing it to the libraries listed below
Sorting:
- ☆255Updated last year
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆96Updated 3 months ago
- Sequence-level 1F1B schedule for LLMs.☆38Updated 4 months ago
- ☆112Updated 7 months ago
- A lightweight design for computation-communication overlap.☆207Updated 2 weeks ago
- ☆104Updated last year
- ☆153Updated last year
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆191Updated 11 months ago
- Standalone Flash Attention v2 kernel without libtorch dependency☆113Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆78Updated last year
- Matrix Multiply-Accumulate with CUDA and WMMA( Tensor Core)☆146Updated 5 years ago
- PyTorch bindings for CUTLASS grouped GEMM.☆139Updated 7 months ago
- Pipeline Parallelism Emulation and Visualization☆74Updated 6 months ago
- ☆158Updated 2 months ago
- Benchmark code for the "Online normalizer calculation for softmax" paper☆104Updated 7 years ago
- An extension library of WMMA API (Tensor Core API)☆109Updated last year
- ☆164Updated 8 months ago
- ☆164Updated last year
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆44Updated 10 months ago
- NVSHMEM‑Tutorial: Build a DeepEP‑like GPU Buffer☆152Updated 3 months ago
- nnScaler: Compiling DNN models for Parallel Training☆123Updated 3 months ago
- Implement Flash Attention using Cute.☆100Updated last year
- An extention of TVMScript to write simple and high performance GPU kernels with tensorcore.☆51Updated last year
- a size profiler for cuda binary☆69Updated 3 months ago
- ☆60Updated 5 months ago
- ☆84Updated 3 years ago
- ☆65Updated 8 months ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆141Updated 8 months ago
- An efficient GPU support for LLM inference with x-bit quantization (e.g. FP6,FP5).☆276Updated 5 months ago
- High-speed GEMV kernels, at most 2.7x speedup compared to pytorch baseline.☆123Updated last year