JingjingBNU / The-Learning-Sciences
☆6Updated 6 years ago
Alternatives and similar repositories for The-Learning-Sciences:
Users that are interested in The-Learning-Sciences are comparing it to the libraries listed below
- 基于深度学习方法的地铁短时客流预测__notebook代码实现☆13Updated last year
- ☆20Updated last year
- Code for Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit☆29Updated 4 years ago
- The repo for the ITSC 2022 paper "Forecasting Regional Multimodal Transportation Demand with Graph Neural Networks: An Open Dataset"☆22Updated last year
- plot_map包提供了在matplotlib上绘制地图底图的功能☆55Updated 2 years ago
- Urban Cup 2023☆16Updated last year
- The benchmark related to the survey: An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques☆28Updated last year
- Course materials for big data and urban computing (2020 fall semester).☆43Updated 4 years ago
- [TKDE 2021 Paper] DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction☆16Updated last year
- Implementation of the paper - Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction☆39Updated 2 years ago
- Repository for advanced traffic forecasting models integrating GCN, LSTM/Bi-LSTM, and attention mechanisms for improved accuracy, includi…☆14Updated 7 months ago
- 基于地理加权回归(GWR)模型探索城市环境对共享单车出行的影响,使用POI数据作为城市环境变量。☆12Updated 10 months ago
- [AAAI'19] Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting (Pytorch Replication)☆90Updated 3 years ago
- The pytorch code of DGCN(TITS)☆53Updated 2 years ago
- OD数据可视化工具☆56Updated 10 months ago
- 比较 TCN、GRU、GCN、TGCN、 TCN+GCN 在 交通流量预测方面的准确率效果。☆127Updated 3 years ago
- [ECMLPKDD21] Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19☆31Updated last year
- implementation segmentation of urban areas using road network 自动生成自然街区(交通小区)☆46Updated 6 years ago
- 城市群体驻留与交通流量时空模式研究☆12Updated 8 years ago
- 城市交通道路流量预测☆50Updated 6 years ago
- 本数据集包括截止2020年12月31日中国大陆已开通的地铁交通的城市: 北京、天津、上海、广州、长春、大连、武汉、重庆、深圳、南京、沈阳、成都、佛山、西安、苏州、昆明、杭州、哈尔滨、郑州、长沙、宁波、无锡、青岛、南昌、福州、东莞、南宁、合肥、石家庄、贵阳、厦门、乌鲁木齐、济…☆44Updated 4 years ago
- 《交通大数据理论与方法》☆164Updated 2 years ago
- The code and documentation for geo-contextual multitask embedding learner☆25Updated 3 years ago
- Indonesia's COVID-19 daily new cases prediction using LSTM-GCN method.☆14Updated 4 years ago
- [ECML-PKDD2022] EpiGNN: Exploring Spatial Transmission with Graph Neural Network for Regional Epidemic Forecasting☆25Updated 2 years ago
- Transportation data online prediction☆48Updated 3 years ago
- ☆76Updated last year
- MVTS Classification with GCN-LSTM☆21Updated 3 years ago
- Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic Prediction☆20Updated last year