JUDAIhyper / Traffic_Predict
2019年广西人工智能设计大赛:交通-地铁客流量预测Baseline(三等奖)
☆50Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for Traffic_Predict
- 分别使用三种图卷积做一个简单的交通流量预测模型。☆35Updated 4 years ago
- 比较 TCN、GRU、GCN、TGCN、 TCN+GCN 在 交通流量预测方面的准确率效果。☆113Updated 3 years ago
- LCTFP: A freeway traffic flow prediction model based on CNN and LSTM☆82Updated 5 years ago
- 地铁乘客流量预测☆29Updated 5 years ago
- 交通流量多模型预测☆43Updated 4 years ago
- 城市交通道路流量预测☆44Updated 5 years ago
- 利用时间序列预测汽车销量☆37Updated 5 years ago
- 使用GCN和GRU组合模型,多站点气温预测☆32Updated 3 years ago
- 客流预测、Resnet☆16Updated 4 years ago
- a model for traffic flow forecast☆27Updated 5 years ago
- 交通流预测☆16Updated 3 years ago
- used for Stock Prodiction&power prediction&Traffic prediction by ARIMA,xgboost,RNN,LSTM,TCN☆100Updated 4 years ago
- [This repo will NOT be maintained until further notice. Sorry for the inconvencience.] Baselines for Traffic Flow Prediction. (HA, ARIMA,…☆18Updated 3 years ago
- 利用已有的地铁流量历史数据建立模型,实现数据间存在的关联,为该城市未来一天的地铁流量进行一个较为准确的预测☆22Updated 5 years ago
- 基于Keras框架,结合LSTM/GRU/Arima/WNN实现多方式的水质参数预测☆21Updated 6 years ago
- Tutorial about Graph Convolutional Network(GCN)☆90Updated 3 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆75Updated 2 years ago
- 运用GAN来进行交通流预测和数据修复☆20Updated 4 years ago
- A Hybrid Deep Learning Model with Attention based ConvLSTM Networks for Short-Term Traffic Flow Prediction☆92Updated 3 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆42Updated 4 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆65Updated 5 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆176Updated 4 years ago
- research survey of traffic prediction☆26Updated 7 years ago
- Traffic flow predict. Implementation of graph convolutional network with PyTorch☆105Updated 3 years ago
- Multidimensional Time Series Prediction by using LSTM☆55Updated 5 years ago
- AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting☆49Updated last year
- 时间序列ARIMA模型的销量预测☆60Updated 6 years ago
- 2019天池 全球城市计算AI挑战赛 (地铁流量预测)Top30☆11Updated 5 years ago
- 客流量时间序列预测模型☆110Updated 2 years ago
- Code for Multi-graph convolutional network for short-term passenger flow forecasting in urban rail transit☆29Updated 4 years ago