GabrielBianconi / pytorch-rbmLinks
Restricted Boltzmann Machines (RBMs) in PyTorch
☆167Updated 7 years ago
Alternatives and similar repositories for pytorch-rbm
Users that are interested in pytorch-rbm are comparing it to the libraries listed below
Sorting:
- ☆52Updated 8 years ago
- RBM in Pytorch☆59Updated 8 years ago
- This repository has implementation and tutorial for Deep Belief Network☆101Updated 7 years ago
- Auto Encoders in PyTorch☆63Updated 7 years ago
- Deep neural network kernel for Gaussian process☆212Updated 5 years ago
- Reimplementation of Variational Inference with Normalizing Flows (https://arxiv.org/abs/1505.05770)☆238Updated 7 years ago
- a python implementation of various versions of the information bottleneck, including automated parameter searching☆129Updated 5 years ago
- ☆102Updated 7 years ago
- Wasserstein / earth mover's distance visualizations☆66Updated 8 years ago
- Clean repo for tensor-train RNN implemented in TensorFlow☆69Updated 6 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- Tutorial on normalizing flows.☆299Updated 7 years ago
- a repo sharing Bayesian Neural Network recent papers☆216Updated 6 years ago
- Bayesian Neural Network in PyTorch☆91Updated last year
- PyTorch implementation of Neural Processes☆88Updated 6 years ago
- Understanding normalizing flows☆132Updated 6 years ago
- Pytorch Implementation of variational auto-encoder for MNIST☆61Updated 7 years ago
- PyTorch implementation of Wasserstein Auto-Encoders☆296Updated 5 years ago
- Pytorch Adversarial Auto Encoder (AAE)☆87Updated 6 years ago
- Pytorch implementation of Hyperspherical Variational Auto-Encoders☆378Updated 5 years ago
- Masked Autoregressive Flow☆218Updated last year
- An implementation of Restricted Boltzmann Machine in Pytorch☆56Updated 6 years ago
- Source code for Naesseth et. al. "Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms" (2017)☆38Updated 8 years ago
- Unsupervised clustering with (Gaussian mixture) VAEs☆301Updated 8 years ago
- Official pytorch implementation of the paper "Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels" (NeurIPS 2020)☆206Updated 3 years ago
- PyTorch implementation of "Weight Uncertainty in Neural Networks"☆176Updated 3 years ago
- ☆59Updated 6 years ago
- A Variational Autoencoder (VAE) implemented in PyTorch☆433Updated 3 years ago
- Deep Kernel Learning. Gaussian Process Regression where the input is a neural network mapping of x that maximizes the marginal likelihood☆95Updated 8 years ago
- A CNN Variational Autoencoder (CNN-VAE) implemented in PyTorch☆303Updated 5 years ago