FreedomIntelligence / InstructionZooLinks
☆280Updated last year
Alternatives and similar repositories for InstructionZoo
Users that are interested in InstructionZoo are comparing it to the libraries listed below
Sorting:
- 语言模型中文认知能力分析☆236Updated last year
- 用于大模型 RLHF 进行人工数据标注排序的工具。A tool for manual response data annotation sorting in RLHF stage.☆251Updated last year
- Implementation of Chinese ChatGPT☆287Updated last year
- ☆459Updated 11 months ago
- ☆308Updated 2 years ago
- pCLUE: 1000000+多任务提示学习数据集☆495Updated 2 years ago
- ChatGLM-6B 指令学习|指令数据|Instruct☆654Updated 2 years ago
- alpaca中文指令微调数据集☆392Updated 2 years ago
- ☆162Updated 2 years ago
- 中文 Instruction tuning datasets☆131Updated last year
- Chinese large language model base generated through incremental pre-training on Chinese datasets☆236Updated 2 years ago
- 对ChatGLM直接使用RLHF提升或降低目标输出概率|Modify ChatGLM output with only RLHF☆194Updated 2 years ago
- 中文图书语料MD5链接☆218Updated last year
- A Chinese Open-Domain Dialogue System☆322Updated last year
- A framework for cleaning Chinese dialog data☆271Updated 4 years ago
- ☆172Updated 2 years ago
- 开源SFT数据集整理,随时补充☆516Updated 2 years ago
- 专注于中文领域大语言模型,落地到某个行业某个领域,成为一个行业大模型、公司级别或行业级别领域大模型。☆118Updated 3 months ago
- ☆128Updated 2 years ago
- Firefly中文LLaMA-2大模型,支持增量预训练Baichuan2、Llama2、Llama、Falcon、Qwen、Baichuan、InternLM、Bloom等大模型☆410Updated last year
- MEASURING MASSIVE MULTITASK CHINESE UNDERSTANDING☆87Updated last year
- Finetuning LLaMA with RLHF (Reinforcement Learning with Human Feedback) based on DeepSpeed Chat☆115Updated 2 years ago
- Naive Bayes-based Context Extension☆326Updated 5 months ago
- ChatGLM2-6B 全参数微调,支持多轮对话的高效微调。☆399Updated last year
- [EMNLP 2023] Lion: Adversarial Distillation of Proprietary Large Language Models☆206Updated last year
- BiLLa: A Bilingual LLaMA with Enhanced Reasoning Ability☆419Updated 2 years ago
- Easy and Efficient Finetuning LLMs. (Supported LLama, LLama2, LLama3, Qwen, Baichuan, GLM , Falcon) 大模型高效量化训练+部署.☆604Updated 4 months ago
- 一个基于HuggingFace开发的大语言模型训练、测试工具。支持各模型的webui、终端预测,低参数量及全参数模型训练(预训练、SFT、RM、PPO、DPO)和融合、量化。☆217Updated last year
- text embedding☆146Updated last year
- 怎么训练一个LLM分词器☆149Updated last year