DWCTOD / flask-keras-cnn-image-retrieval-master
爬取百度图片,搭建自己的图片索引库实现简单的以图搜图功能,还有可视化效果
☆51Updated 5 years ago
Alternatives and similar repositories for flask-keras-cnn-image-retrieval-master:
Users that are interested in flask-keras-cnn-image-retrieval-master are comparing it to the libraries listed below
- Bag of Visual Feature with Hamming Enbedding, Reranking☆54Updated 6 years ago
- Large-scale image retrival by deep learning(基于深度学习的大规模图像检索)☆113Updated 7 years ago
- TinyMind人民币编码识别竞赛,第三名代码☆21Updated 4 years ago
- 图像细粒度分类☆12Updated 6 years ago
- 图像检索 颜色直方图 图像检索引擎 pHash☆27Updated last year
- 爱奇艺多模态人物识别比赛,排名第四☆69Updated 6 years ago
- 基于内容的图像检索系统(Content Based Image Retrieval,简称 CBIR)☆63Updated 6 years ago
- 图像检索常用数据库☆21Updated 9 years ago
- A flask-based cbir system☆87Updated last year
- Train CNN model by tf.estimator☆29Updated 5 years ago
- 🚀CNN-based image retrieval built on Keras☆520Updated 2 years ago
- 基于VGG16网络提取图像特征做图像检索提供Restful接口demo☆16Updated 5 years ago
- 利用vgg-16/19预训练模型提取图片的特征☆26Updated 6 years ago
- 基于天池数据的淘宝穿衣搭配推荐算法☆38Updated 6 years ago
- QT界面+图像检索+神经网络☆26Updated 4 years ago
- 离线构建大规模图像特征索引库,实现在线相似图片精准查询☆77Updated 4 years ago
- tensorflow serving and deep model online https://dataxujing.github.io/tensorflow-serving-Wechat/?transition=convex#/☆19Updated 6 years ago
- 一个本地的基于内容的图像检索系统,实现了包括颜色特征提取(颜色直方图,HSV中心距),纹理特征(灰度共生矩阵,LBP算子),边缘特征(边缘直方图),哈希感知算法(aHash,pHash,dHash算法等),SIFT特征提取。以及基于VGG-16提取特征等功能☆83Updated last year
- Python3使用TF-Slim进行图像分类☆50Updated 6 years ago
- 采用深度学习方法进行刀具识别。☆23Updated 5 years ago
- 【目标识别】yolo3_keras_Logo识别&&训练自己数据☆27Updated 3 years ago
- 使用LSTM训练生成古诗模型,其中 生成器可以指定生成风格进行输出☆31Updated 6 years ago
- Uses TensorFlow and FC2 features to match test images to the same category given a query image as input☆55Updated 7 years ago
- 通过深度学习来实现银行卡号识别(CTPN、Densenet、CTC)☆3Updated 4 years ago
- 微调 Inception-ResNet-V2, 解决 AI Challenger 2017 场景分类问题。☆77Updated 5 years ago
- 基于tf.keras的多标签多分类模型☆85Updated 3 years ago
- ☆21Updated 6 years ago
- FashionAI Clothes Attribute Recognition☆84Updated 6 years ago