AlexPasqua / AutoencodersLinks
Pytorch implementation of various autoencoders (contractive, denoising, convolutional, randomized)
☆64Updated 3 years ago
Alternatives and similar repositories for Autoencoders
Users that are interested in Autoencoders are comparing it to the libraries listed below
Sorting:
- Variational Autoencoder (VAE) with perception loss implementation in pytorch☆145Updated last year
- Simple and clean implementation of Conditional Variational AutoEncoder (cVAE) using PyTorch☆122Updated 2 years ago
- A toy example of VAE-regression network☆72Updated 5 years ago
- This folder of code contains code and notebooks to supplement the "Vision Transformers Explained" series published on Towards Data Scienc…☆92Updated last year
- The only guide you need to learn everything about GMM☆134Updated last year
- Benchmark time series data sets for PyTorch☆36Updated last year
- Improved training of Wasserstein GANs☆46Updated 4 years ago
- Pytorch implementation of "DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data".☆121Updated 4 years ago
- Collection of tutorials on diffusion models, step-by-step implementation guide, scripts for generating images with AI, prompt engineering…☆150Updated 8 months ago
- Kolmogorov-Arnold Networks (KAN) using Jacobi polynomials instead of B-splines.☆41Updated last year
- Pytorch implementation for VAE and conditional VAE.☆38Updated 5 years ago
- A pytorch implementation of MCDO(Monte-Carlo Dropout methods)☆57Updated 6 years ago
- A Convolutional Variational Autoencoder (CVAE) for 3D CFD data reconstruction and generation.☆43Updated 3 years ago
- Awesome Domain Adaptation Python Toolbox☆358Updated last week
- PyTorch implementation of Variational Autoencoder (VAE) on MNIST dataset.☆27Updated last year
- ☆35Updated 2 years ago
- Pytorch implementation of Conditional-GAN (CGAN)☆51Updated 3 years ago
- Autoencoders in PyTorch☆98Updated 3 years ago
- Self Supervised Learning for Time Series Using Similarity Distillation☆12Updated 3 years ago
- ☆29Updated last year
- Implementation of the SoftAdapt paper (techniques for adaptive loss balancing of multi-tasking neural networks)☆33Updated last year
- An implementation of the state-of-the-art Deep Active Learning algorithms☆106Updated 2 years ago
- Uncertainty Estimation Using Deep Neural Network and Gradient Boosting Methods☆22Updated 4 years ago
- Personal short implementations of Machine Learning papers☆248Updated last year
- Hands-on tutorial for implementing Physics Informed Neural Networks in Pytorch☆55Updated 7 months ago
- Code base for the paper ViT-AE++: Improving Vision Transformer Autoencoder for Self-supervised Medical Image Representations☆56Updated last year
- Lipschitz Recurrent Neural Networks☆30Updated 4 years ago
- A simple tutorial of Variational AutoEncoders with Pytorch☆426Updated last year
- Neural Time Series Analysis with Fourier Transform: A Survey☆32Updated 2 years ago
- Evidential Deep Learning in PyTorch☆67Updated 3 years ago