452896915 / cs231n_course_homework
cs231n_course_homework code
☆31Updated 7 years ago
Alternatives and similar repositories for cs231n_course_homework:
Users that are interested in cs231n_course_homework are comparing it to the libraries listed below
- 使用LBP方法提取特征,再使用svm进行分类☆40Updated 7 years ago
- ☆66Updated 4 years ago
- 零样本学习☆29Updated 6 years ago
- A Strong Baseline with Many Tricks for Image Classification☆47Updated 2 years ago
- all code used by python(including web-crawler,deeplearning)☆28Updated 4 years ago
- 获取图像的LBP 特征☆81Updated 9 years ago
- ☆171Updated 6 years ago
- 《深度学习之PyTorch实战计算机视觉》全书代码☆132Updated 5 years ago
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 4 years ago
- use pytorch to do image classification☆138Updated 4 years ago
- HoG, PCA, PSO, Hard Negative Mining, Sliding Window, Edge Boxes, NMS☆170Updated 4 months ago
- The use examples of tensorboard on pytorch☆148Updated 6 years ago
- Simple hand classifier by Pytorch and ResNet☆99Updated 5 years ago
- 一个通用的图像分类模板,天池/CVPR AliProducts挑战赛 3/688☆85Updated 4 years ago
- For the CIFAR-10 dataset, extracting HOG features and using SVM classifier to classify them, at last, we get the accuracy.☆43Updated 5 years ago
- voc2007的多标签分类☆18Updated 4 years ago
- Kaggle竞赛题猫狗大战 ,用于PyTorch入门☆67Updated 5 years ago
- Visualization CNN model by Keras.☆73Updated 6 years ago
- data augmentation on python☆35Updated 7 years ago
- Focal Loss for multi-class classification☆55Updated 6 years ago
- Classification with backbone Resnet and attentions: SE-Channel Attention, BAM - (Spatial Attention, Channel Attention, Joint Attention), …☆60Updated 4 years ago
- 利用vgg-16/19预训练模型提取图片的特征☆26Updated 6 years ago
- 天气分类比赛☆22Updated 5 years ago
- Minimal PyTorch implementation of YOLOv3☆62Updated 5 years ago
- 结合cs231n笔记和幻灯片,简单地总结所学习的内容☆31Updated 7 years ago
- 旨在搭建一个分类问题在Pytorch框架下的通解,批量解决单任务多分类问题、多任务多分类问题。☆20Updated 5 years ago
- 实现机器学习实战以及关于周志华西瓜书中的一些扩展算法等☆10Updated 6 years ago
- ☆75Updated 6 years ago
- ☆71Updated 5 years ago
- 基于pytorch框架的classification万用模板☆257Updated 6 years ago