23miya / -LSTM-Links
基于 LSTM 循环神经网络的电力系统负荷预测分析。建立 CART 回归树以及 LSTM 模型对该地区未来 10 天间隔 15 分钟负荷以及未来 3 个月负荷最大最小值进行预测。将行业数据分为大工业用电最大值、大工业用电最小 值;非普工业最大值、非普工业最小值;普通工业最大值、普通工业最小值; 商业最大值、商业最小值八个数据集分别进行研究,采用设定阈值的方法得出 每个行业最大值和最小值负荷突变点,并根据每个突变点的时间和量级都做了原因分析。之后,分别采用了 CART 回归树、LSTM 模型以及 KNN 算法对八个数据集进行负荷预测,对比三个模 型的预测精度发现 LSTM 模型效果最佳。
☆40Updated 2 years ago
Alternatives and similar repositories for -LSTM-
Users that are interested in -LSTM- are comparing it to the libraries listed below
Sorting:
- 使用多种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)进行电力系统负荷预测/电力预测。通过一个简单的例子。A variety of algorithms (linear regression, random forest, support vecto…☆177Updated 5 years ago
- 基于深度学习的多特征电力负荷预测☆156Updated 5 years ago
- 电力负荷的时间序列未来预测☆26Updated 3 years ago
- Performed comparative analysis of BiLSTM, CNN-BiLSTM and CNN-BiLSTM with attention models for forecasting cases.☆52Updated 2 years ago
- Implementation of Electric Load Forecasting Based on LSTM(BiLSTM). Including Univariate-SingleStep forecasting, Multivariate-SingleStep f…☆263Updated 3 years ago
- 一种有效的电力负荷预测方法☆63Updated 5 years ago
- ☆31Updated 2 years ago
- Regression prediction of time series data using LSTM, SVM and random forest. 使用LSTM、SVM、随机森林对时间序列数据进行回归预测,注释拉满。☆197Updated 5 years ago
- PyTorch实现的Informer (Informer:用于长序列时间序列预测☆29Updated 3 years ago
- 多元多步时间序列的LSTM模型预测——基于Keras☆88Updated 3 years ago
- Wind Power Forecasting Based on Hybrid CEEMDAN-EWT Deep Learning Method☆83Updated 2 years ago
- Load forecasting using LSTM and BP.使用LSTM、BP神经网络实现负荷预测☆17Updated 4 years ago
- 光伏发电功率预测☆88Updated 5 years ago
- 基于pytorch搭建多特征LSTM时间序列预测☆174Updated 3 years ago
- 本科毕业设计:基于TCN的电力负荷预测算法☆19Updated 2 years ago
- Tree seed algorithm and Particle Swarm algorithm are used for searching the LSTM hyper parameters☆11Updated 2 years ago
- Implementation of Electric Load Forecasting Based on LSTM (BiLSTM). Including direct-multi-output forecasting, single-step-scrolling fore…☆101Updated 3 years ago
- ☆39Updated 2 years ago
- CEEMDAN-VMD-LSTM Forecasting model (a light version of CEEMDAN_LSTM)☆104Updated 3 years ago
- 使用支持向量机、弹性网络、随机森林、LSTM、SARIMA等多种算法进行时间序列的回归预测,除此以外还采取了多种组合方法对以上算法输出的结果进行组合预测。Support vector machine, elastic network, random forest, LSTM…☆46Updated 5 years ago
- 1) How to Prepare Time Series Data for CNNs and LSTMs?? 2) How to Develop CNNs for Time Series Forecasting?? 3) How to Develop LSTMs for …☆12Updated last year
- This is the implementation of the paper Enhanced Photovoltaic Power Forecasting: An iTransformer and LSTM-Based Model Integrating Tempora…☆85Updated 5 months ago
- Adaptive Data Analysis Applied to Wind Power Forecasting☆13Updated last year
- 基于VMD-Attention-LSTM的时间序列预测模型(代码仅使用了一个较小数据集的训练及预测,内含使用使用逻辑,适合初学者观看,模型结构是可行的,有能力的请尝试使用更大的数据集训练)☆66Updated 2 years ago
- CNN+LSTM+Attention实现时间序列预测☆62Updated last year
- 风力发电非常环保,且风能蕴量巨大,因此日益受到世界各国的重视。但是对于实际采集 到的测风数据及功率数据都存在各种各样的问题,需要有准确的实测数据来分析风电特征及发电规律 而且从风场收集到的数据中通常包含异常数据点,造成计算机进行数据筛选和排序的速度比较慢,因此 需要可靠有…☆31Updated 4 years ago
- 使用PYTorch框架建立的一个简单的LSTM模型来进行电力负荷预测☆51Updated last year
- ☆16Updated 3 years ago
- ☆45Updated last year
- Short-Term Aggregated Residential Load Forecasting using BiLSTM and CNN-BiLSTM☆37Updated 2 years ago